
 

 

 

 

 

 

 

 

2022 Final Project Report 

for 

Academic Consortium for the 21st Century (AC21) 

Special Project Fund 

 

 

 Future Programmable Converged Wireless-

Optical Infrastructure for Beyond 5G/6G Networks 

 
 

Project Group Leader: Dr. Shih-Chun Lin, Assistant Professor  

North Carolina State University 

Date of Activities: March 2022 – February 2023 

 

 

 

  



 

 

1 

 

Contents 

 

Project Abstract .................................................................................... 2 

Acknowledgment ................................................................................. 2 

Project Description .............................................................................. 3 

Activities and Reports.......................................................................... 7 

Achievement of Activities ................................................................... 8 

Conclusion ........................................................................................... 9 

Appendix ........................................................................................... 10 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

2 

 

Project Abstract 

 

The steep traffic growth on the Internet (+20-30%/year) continues and even accelerates 

due to the COVID-19 pandemic. The widespread teleconferencing and working at remote 

sites boost global traffic by 50% in a year. We must bridge these end-to-end with 

minimized latency and broad bandwidth to fully take advantage of the 5G and future 6G 

mobile communication infrastructure and the data centers' considerable computation and 

storage resources. Led by North Carolina State University, aka NC State, this AC21 SPF 

2022 project aims at UN’s SDGs #9 (Industry, Innovation, and Infrastructure) and initiates 

collaborative research discussion and external grant planning for developing future 

programmable and resilient converged wireless-optical networks. Dr. Shih-Chun Lin (NC 

State), Dr. Hiroshi Hasegawa (Nagoya University), Dr. Peng Shi (University of Adelaide), 

Dr. Ta-Sung Lee (National Chiao Tung University), and Dr. Shao-Yu Lien (Institute for 

Information Industry) joined their efforts in this project with outstanding 

accomplishments in 2022-2023. These achievements include several joint proposal 

submissions, a seminar talk and teleconferences, technical paper publications, a technical 

workshop, and research awards. 
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Project Description  

 

This project aims to initiate joint research discussion and external proposal development 

on building programmable converged wireless-optical infrastructure for future networks.  

Team members investigated zero-touch edge clouds and resource management, optically 

powered passive fronthaul networks and their architectural designs, programmable multi-

petabit optical networks, and end-to-end network orchestration. We discussed working 

tasks to establish an experimental testbed and evaluate the testbed for beyond 5G/6G 

applications. The project empowers the realization of future large-scale communications 

infrastructure with the promised performance of high reliability, low latency, resilience, 

and cost-efficiency. The conducted activities promote creating a community interested in 

this new opportunity. 

    Based on the initial discussion, we mainly sought external grants during this project, 

reinforcing institutions’ strategic research partnerships. We set several research 

discussions and implemented programmable wireless-optical systems and their possible 

enabling technologies. As a result, we got the following funding support for 

comprehensive research.  

 

• Non-Terrestrial Integrated Access and Backhaul for 6G LEO Satellite MVNO, Cisco 

Systems, Inc., February 2023. 

• Enabling Zero-Touch Prioritized Traffic Steering for Self-Healing Satellite Swarms, 

Lockheed Martin Corp., November 2022. 

• DRL-ORAN Platform for Large-Scale Networking Resource Management, Meta, 

October 2022.  

• Collaborative Research: NeTS: JUNO3: End-to-End Network Slicing and 

Orchestration in Future Programmable Converged Wireless-Optical Networks, NSF, 

September 2022. 

• O-RAN A1 Interface Policy Management, Institute for Information Industry (III), 

September 2022. 

• Towards Eigen-Spatial Filtering and Spreading for Anti-Jammed MIMO p-LEO 

Satellites, Lockheed Martin Corp., June 2022. 

• 6G Serverless Computing Architecture with SLA Assurance for Cross-Constellation 

C3, NASA: North Carolina Space Grant, June 2022. 

• Towards 6G SmartFab with SLA Assurance and Reconfigurable Multi-Robot Task 

Assignment, NC State 2022 FRPD, May 2022.  

• Future Scalable and Resilient Converged Wireless-Optical Infrastructure for Beyond 

5G/6G Networks: International Collaborative Research Planning, the Harry C. Kelly 

Memorial Fund, March 2022. 

 

Notably, stemming from this AC 21 project, we submitted the comprehensive research 

and got a joint awarded project, funded by NSF Japan-US Network Opportunity (JUNO), 

to facilitate high-quality and long-term research collaboration. NC Japan Center at NC 

State also provided a supplemental fund to help with research engagement and 

international travel. Moreover, based on our designed platform, we worked with III to 

detail the development of intelligent controllers concerning different time granularities in 

decision and management. The results empowered beyond 5G/6G services and new end-
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to-end applications. We also expanded the programmable platform to 6G satellite 

communications for a new project supported by the NC pace grant. The primary objective 

is to realize application programming interfaces (APIs) for cross-constellation control, 

command, and communications.     

    At the end of 2022, Dr. Lin conducted two and a half months of research and 

education exchange with several intense discussions and meetings in Taiwan to generate 

this project’s outcomes. A seminar talk on “AI-native federated networks,” shown in 

Figure 1, was delivered at National Taiwan University in December 2022.  

 

• “AI-Native Federated Networks for 6G and Edge Intelligence,” the GICE, National 

Taiwan University, Taipei, Taiwan, December 19, 2022. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This invited talk was one of the annual seminars for students in the school’s graduate 

institute of communications engineering. Dr. Lin presented the research and development 

insights of 6G networks and edge intelligence based on this AC 21 project’s results. This 

presentation shows our substantive engagement in ultra-low latency connected vehicle 

infrastructure, distributed intelligence over wireless edge networks, and 6G intelligent 

edge practices with non-terrestrial networks and end-to-end slicing orchestration. The 

details can be found in the attached flyer of this report.  

Figure 1. Dr. Lin gave a “AI-native federated networks” seminar  

at National Taiwan University. 
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    In addition, we published three international conference papers and submitted a few 

journal articles, under review, in the research scope of the AC21 project. A completed list 

is provided below.  

 

• K. V. S. Rohit, S.-C. Lin, and L. C. Chu, “SPELS: Scalable and Programmable 

Testbed for Evaluating LEO Satellite Swarm Communications,” in Proc. of IEEE 

INFOCOM Workshop, New York area, USA, May 2023.  

• D. Haro-Mendoza, L. Tello-Oquendo, V. Pla, J. Martinez-Bauset, L. Marrone, S.-C. 

Lin, “On the Resource Allocation for Radio Access Network Slicing in Cellular IoT 

with Massive Traffic,” in CSCI, Las Vegas, USA, December 2022.  

• D. Haro-Mendoza, L. Tello-Oquendo, V. Pla, J. Martinez-Bauset, L. Marrone, S.-C. 

Lin, “Modeling the Resource Allocation in 5G Radio Access Networks with Network 

Slicing,” in CSCI, Las Vegas, USA, December 2022.  

• S.-C. Lin, C.-H. Lin, L. C. Chu, and S.-Y. Lien, “Enabling Resilient Access Equality 

for 6G LEO Satellite Swarm Networks,” under review, 2022.  

• C.-H. Lin, K. V. S. Rohit, S.-C. Lin, and L. C. Chu, “6G-AUTOR: Autonomic CSI-

Free Transceiver via Realtime On-Device Signal Analytics,” under review, 2022.  

• S.-C. Lin, C.-H. Lin, and M. Lee, “Privacy-Preserving Serverless Edge Learning with 

Decentralized Small Data,” under review, 2022.    

• S.-Y. Lien, Y.-C. Huang, C.-C. Tseng, S.-C. Lin, C.-L. I, Xiaofei Xu, and D.-J. Deng, 

“Universal Vertical Application Adaptation for Open RAN: Sustainable RIC and 

Autonomous Intelligent xAPP Generation,” under review, 2022.  

• M. F. Pervej, R. Jin, S.-C. Lin, H. D, “Efficient Content Delivery in Cache-Enabled 

VEN with Deadline-Constrained Heterogeneous Demands: A User-Centric Approach,” 

under review, 2022. 

 

Particularly, the SPELS work was published by the top-tier communications conference, 

the IEEE International Conference on Computer Communications (INFOCOM). It 

introduces a scalable and programmable OTA (over-the-air) testbed to provide a real-time 

architectural implementation of satellite swarm systems and demonstrate the testbed’s 

effectiveness in online swarm communications. Experimental evaluations validate the 

superiority of our swarm combiner with learning-enabled channel coding for online 

frontend operations, thus facilitating LEO swarm readiness. Besides, we studied the radio 

resource allocation problem of a 5G gNB on an uplink random access channel concerning 

different user traffic types. Network slicing solutions were proposed to assign each slice’s 

preambles on the service priority; the corresponding random access procedure can 

maximize users’ successful access probabilities in each slice. The results were published 

in Computational Science & Computational Intelligence (CSCI’22). 
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    Moreover, after a few rounds of discussions and thorough preparation, Dr. Lin and several 

faculties organized a workshop on “NG-OPERA: Next-Generation Open and Programmable 

Radio Access Networks” in the IEEE INFOCOM 2023. As shown in Figure 2, this technical 

workshop focused on state-of-the-art and practice solutions for addressing critical challenges in 

developing and operationalizing open radio access networks. The workshop will be held with the 

leading conference in the New York area on May 20, 2023.  

 

 

 

 

 

 

 

 

 

 

 

We also received research and demo awards closely related to this AC21 project from an 

industrial company and government agency, as shown below. 

 

• 2022 AI4AI Research Award, “DRL-ORAN Platform for Large-Scale Networking 

Resource Management,” Meta, 2022. 

• Finalist, “Data-Driven Modulation and Coding for Beyond 5G Communications,” 

4th Annual Beyond 5G SDR University Challenge, Air Force Research Laboratory 

(AFRL), 2022. 

 

  

Figure 2. IEEE INFOCOM 2023 NG-OPERA workshop, May 20, 2023. 
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Activities and Reports 

 

Mar. 2022 
Have several discussions for the project roadmap and proposal preparation 

for potential external grants. 

• Participating members initiated teleconferencing meetings to 

discuss a detailed timeline and tasks for the research activities. 

Apr. 2022 
Conducted beyond 5G communications demo at the 4th Annual Beyond 5G 

SDR University Challenge at Air Force Research Laboratory (AFRL). 

https://www.wbi-innovates.com/blogs/post/5G-awards 

May – June 

2022 

Conducted research on programmable converged wireless-optical networks 

and their extended use cases.  

• Prepared several related journal manuscripts and external proposals. 

July 2022 
Engaged with Institute for Information Industry (III) to expand this project 

with ORAN interface designs. 

Aug. 2022 
Engaged with Meta Research to extend this project in large-scale 

networking scenarios.https://research.facebook.com/research-awards/2022-

ai4ai-research-request-for-proposals/ 

Sep. – Oct. 

2022 

Prepare conference papers to be submitted to IEEE INFOCOM and CSCI 

https://www.american-cse.org/csci2022/ 

• Summarized the results for SPELS implementations and new 5G 

gNB network slicing designs. 

Nov. 2022 
Prepared a technical workshop. 

• Organized a workshop on Open and Programmable Radio Access 

Networks in IEEE INFOCOM 2023 https://infocom2023.ieee-

infocom.org/next-generation-open-and-programmable-radio-

access-networks-ng-opera 

Dec. 2022 – 

Feb. 2023 

Two and a half months visit for research and education engagements. 

• Visited a non-AC21 institution to deliver a seminar talk about the 

AC21 project outcomes. 

• Discussed potential student exchange opportunities and the 

project’s sustainability for the planned scope and impact beyond 

the AC21 grant period.  

• Reinforced the complementary strengths of the participating 

institutions’ strategic partnership. 

Feb. 2023 
Wrapped up the project. 

• Provided a final report, newsletter, and technical papers. 

• This collaborative project successfully empowered the realization 

of future programmable converged infrastructure for new beyond 

5G/6G services with the promised performance of high reliability, 

low latency, resilience, and cost-efficiency 

 

 

 

 

https://www.wbi-innovates.com/blogs/post/5G-awards
https://research.facebook.com/research-awards/2022-ai4ai-research-request-for-proposals/
https://research.facebook.com/research-awards/2022-ai4ai-research-request-for-proposals/
https://www.american-cse.org/csci2022/
https://infocom2023.ieee-infocom.org/next-generation-open-and-programmable-radio-access-networks-ng-opera
https://infocom2023.ieee-infocom.org/next-generation-open-and-programmable-radio-access-networks-ng-opera
https://infocom2023.ieee-infocom.org/next-generation-open-and-programmable-radio-access-networks-ng-opera
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Achievement of Activities  

 

The longstanding relationship and strategic partnership among NC State, Nagoya 

University (NU), and the University of Adelaide (AU) leverage complementary strengths 

and transdisciplinary scholarship to advance research collaboration and academic 

exchanges. By jointly planning collaborative research activities, the project reinforces 

three university linkages through communications between PIs’ teams. The leading PI Lin 

has already established a very strong collaboration with PI Shi and NU’s faculties during 

the last two AC21 projects. The PIs used essential conference forums, e.g., IEEE 

INFOCOM and CSCI, to advance industrial partnerships and achieve funding success. 

This project stimulated international collaboration with the following contributions and 

broader impacts on research, education, and international exchange. 

    Research: This project outcomes systematically accomplished programmable 

converged wireless-optical networks for beyond 5G/6G services and new end-to-end 

applications. It led researchers’ and students’ substantive engagement in optical networks 

and communications, power fiber designs, system programming, telecommunications, 

and wireless networking. The discussion involved the multidisciplinary knowledge of 

edge clouds, power over fibers, fronthaul architecture design, multi-petabit optical 

networks, and end-to-end network orchestration.  

    Education: The project results were incorporated into Optimizations and Algorithms 

and Introduction to Computer Networking courses at undergraduate and graduate levels 

in the ECE Department at NC State, the school of EEE at AU, and the IMaSS at NU. The 

PIs also trained their Ph.D. students to become experts in this fast-evolving field and 

involved M.S. and undergraduate students in the proposed research by assigning them 

sub-problems to solve. 

    International Exchange: The PIs also plan their institutions’ visiting/exchange Ph.D. 

student programs. Exchanging students will enhance the cross-linkage among team 

members' research lines and further strengthen the AC21 network. 
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Conclusion  

 

This project has successfully initiated joint research discussions, seminars, external grant 

preparation, and workshop organization for beyond 5G/6G networks. Several academic 

and research activities were conducted to place participating AC21 members in a unique 

leading position. We foresee more engineers and researchers will engage in developing 

our proposed programmable converged wireless-optical infrastructure and continue to 

foster our strategic partnerships based on this project's outcomes. 

 

 

 

 

 

 





SPELS: Scalable and Programmable Testbed for
Evaluating LEO Satellite Swarm Communications

K V S Rohit
iWN Lab, ECE Department

North Carolina State University
Raleigh, NC, USA
vkanthe@ncsu.edu

Shih-Chun Lin
iWN Lab, ECE Department

North Carolina State University
Raleigh, NC, USA
slin23@ncsu.edu

Liang C. Chu
Lockheed Martin Space Systems

Company (LMSSC)
Sunnyvale, CA, USA

liang.c.chu@lmco.com

Abstract—Low earth orbit (LEO) satellite communications
promise next-generation mobile networks with seamless connec-
tivity to rural, remote, and inaccessible areas. Notably, due to
low-cost deployment and quick turn-around times in production,
proliferated LEOs deployed and orchestrated as a swarm of
satellites can support ultra-broad transmissions for the ever-
evolving communications and aid current wireless network in-
frastructure. This paper introduces a scalable and programmable
OTA (over-the-air) testbed, called SPELS, to provide a real-
time architectural implementation of satellite swarm systems
and demonstrate the testbed’s effectiveness in online swarm
communications. First, the in-lab SPELS testbed is established
with COTS (commercial off-the-shelf) software-defined radios,
a high-performance host computer, and wireless softwarization.
Accordingly, the latest AI-enabled wireless communications and
real-time signal processing constraints can be easily realized
upon various frontends by decoupling radio swarm networks’
control and data planes. Furthermore, based on the designed
infrastructure, an end-to-end module is proposed for timely and
resilient satellite swarm communications. This module consists
of swarm-MRC, an optimal swarm combining technique, and a
5G-compliant deep learning-based LDPC scheme. Experimental
evaluations validate the superiority of our swarm combiner with
learning-enabled channel coding for online frontend operations,
thus facilitating LEO swarm readiness.

Index Terms—Proliferated LEOs, satellite swarm communi-
cation, programmable testbed, swarm-maximal ratio combining,
low-density parity-check coding, data-driven communications.

I. INTRODUCTION

LEO satellite communications development and their inte-
gration with the existing terrestrial radio access networks is
a highly-researched area, with a motivation to provide cost-
effective and high-capacity connectivity to rural, remote and
other inaccessible areas [1]–[3]. In the context of 6G and
beyond infrastructure, such a system exploits the mobility of
satellite nodes, and inter-satellite communication to provide
enhanced coverage and high performance in terms of data
rates and spectral efficiency, thereby adhering to the massive
machine type communication (mMTC) and ultra-reliable low
latency communication (URLLC) requirements easily com-
pared to the GEO (geosynchronous-earth orbit) and MEO
(medium-earth orbit) deployments [4]–[6]. Incorporating LEO

This work was supported in part by LMSSC, the NC Space Grant, the
AC21 Special Project Fund (SPF), the National Science Foundation (NSF)
under Grant CNS-221034, and Meta 2022 AI4AI Research.

satellites as an extension to terrestrial communication has been
proposed through a transparent satellite deployment between
the disaggregated next-generation radio access network struc-
tures in [5], which can be complemented by additional roles
suitable for the Internet-of-things (IoT) ecosystems [6] and
edge computing frameworks [7].

However, some seminal hindrances have been identified
here, which need to be addressed to cater to the aforemen-
tioned needs [8]–[10]. One of the most predominant factors
is the lack of diversity in wireless channels owing to a strong
line-of-sight (LOS) property. As a means to overcome this is-
sue, a swarm structure consisting of proliferated single-antenna
LEO satellites is being proposed, to work as a distributed
antenna transceiver system. Owing to the joint operation
of several satellites in the swarm structure, ultra-wide area
coverage is enabled, all the while providing the necessary
receiver and spatial diversities to improve the data rates. The
ground terminals communicating with the satellite nodes can
constitute devices of varied performance levels, from a single-
antenna transceiver with limited processing capability to high-
end communication systems embedded with a large array of
antennas enabling massive MIMO implementation.

With an aim to demonstrate the effectiveness of our pro-
posed architecture, we have developed SPELS: a Scalable and
Programmable testbed for Evaluating LEO satellite Swarm
communications. We use USRP B210s as the ground terminal
and satellite swarm nodes, communicating with each other
over-the-air (OTA), in an indoor laboratory environment. The
reconfigurability of USRPs in terms of transmission/reception
gains and local oscillator (LO) frequency tuning, and an
external host PC-aided signal processing help create a semi-
controlled indoor environment to emulate LEO swarm commu-
nications. Owing to high computational capacity of the host
PC, it is also plausible to incorporate intelligence by utiliz-
ing machine learning-based models in the data transmission
mechanisms, and also expanding its usage to higher layer
applications such as software defined networking and edge
computing. Based on the designed infrastructure, we have de-
veloped an end-to-end communication module to illustrate the
effectiveness of swarm structure, for realizing robust satellite
communications in real time. This module constitutes swarm
maximal ratio combining (swarm-MRC) as an optimal receiver



diversity technique, and a 5G-compliant deep learning-aided
LDPC channel coding scheme for building error correction
capability in individual nodes. The swarm-MRC employs data
aggregation and channel estimation at swarm nodes to improve
the received data rate, based on the maximal ratio combining
(MRC) diversity technique in terrestrial communications. A
deep learning model has been utilized to implement LDPC
decoding, to incorporate intelligence into our architecture,
thereby realizing a softwarizeable radios and access network.

The remainder of the paper is categorized systematically
to explore the testbed development and implementation of
the aforementioned schemes in a real-time OTA environment.
Section II provides the designed SPELS testbed development.
Section III presents our proposed end-to-end satellite swarm
communications. Section IV demonstrates the results from
swarm-MRC and LDPC channel coding on receiver data rate
improvement. Section V concludes the paper by presenting
several opportunities of exploration for enhancing our existing
testbed, to both improve our current testbed performance and
to incorporate new additions for catering the needs of the 6G
ecosystem.

II. SPELS TESTBED DEVELOPMENT

This sections details the realization of the swarm architec-
ture using SPELS. It also discusses a theoretical LOS channel
model for LEO satellite communications and the practical
channel estimate mechanism used for our experiments.

A. Swarm System Design and Theoretical Channel Model

Proliferated LEO satellite swarms provide unprecedented
opportunities for enabling ubiquitous wireless coverage owing
to a large population of satellite nodes leading to a global
footprint [11], while also exploiting the inherent diversity to
improve the communication link performance. Fig. 1 shows
a satellite swarm architecture constituting a ground-to-space
communication where the ground terminal is equipped with
NT transmitting antennas and the satellite swarm consists
of NS single-antenna satellite nodes. DS defines the inter-
satellite distance, which is a fixed entity decided by the motion
trajectory of the satellite swarm. We also define dil as the
distance between the ith transmission antenna and the lth

satellite node, which is generalized as dl to represent all
distances from the ground terminal to the said node.

LEO satellites serving non-urban areas have a large LOS
probability [12], and thus, we consider a pure LOS channel
model in this paper. We begin with a ground-to-space SISO
link, where the data transfer can be represented as [13], [14]:

y(t) = h . ej(2πfoff t)
∞∑

n=−∞
x[n]gs(t− nT0 − ϵT0) + η(t),

(1)

where x[n] is the encoded transmitted symbol, y(t) is the
baseband data captured at the receiver, h is the complex
wireless channel response, foff is the frequency offset observed
at reception, gs(.) is a pulse shaping filter, ϵ is the timing
offset, T0 is the symbol period and η(t) is the additive gaussian

𝐷𝑆

𝑑𝑙

Satellite Swarm
of 𝑁𝑆 Nodes

𝑁𝑇 Ground
Terminal Antennas

Fixed p-LEO
Trajectory

𝑙𝑡ℎ Satellite
Node

Fig. 1. Proliferated low earth orbit swarm architecture

noise. Specifically for a LEO communication scenario, the
complex channel component h can be further described using
[8]

h =
1√

L(d, fc)
e−j(kd+ϕatm), (2)

where k = 2πfc/c0 is the wave number of the transmitted
signal, fc is the central frequency of operation (in GHz), c0
is the speed of light, d is the distance between the ground
station and the LEO satellite node, ϕatm is the uniformly
distributed phase shift due to the atmosphere and L(d, fc)
(in dB) is the path loss, which, as per [12], can be dissected
into free space path loss PLfs(d, fc) = 32.45+20 log10(fcd),
shadow fading loss (PLsf ), clutter loss (PLcl), attenuation
from atmospheric gases (PLg) and ionospheric or tropospheric
scintillation losses (PLsc) [15] depending on the operating
central frequency:

L(d, fc) = PLfs(d, fc) + PLsf + PLcl + PLg + PLsc. (3)

For the proposed satellite swarm architecture in fig. 1, each
of the NS satellite nodes are sufficiently distant from each
other, and if it is ensured that the NT transmitting antennas
are spaced at least fc/2c0 farther in succession, then all the
communication channels can be considered uncorrelated and
a channel matrix H ∈ CNS×NT can be obtained as a collation
of channel vectors at each satellite node (hl):

H = [h1 h2 . . . hl . . . hNS
]T (4)

where, [.]T is the transpose operation and channel vector at lth

satellite node is defined as an array of channel values from all
transmitting antennas hl = [h1

l h2
l . . . hNT

l ].
And communication between the ith transmitting antenna

and lth satellite node would then be represented, using (2)
and (3), by the channel hi

l as

hi
l =

1√
L(dil, fc)

e−j(kdi
l+ϕatm,l), (5)

where i ∈ {1, 2, . . . , NT }, l ∈ {1, 2, . . . , NS} and ϕatm,l is
the uniform phase shift due to atmosphere at satellite l.
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Fig. 2. Testbed Hardware Setup

B. SPELS Hardware Setup

In order to evaluate the proposed swarm structure and
ground-to-space communication, we have developed an easily
scalable and programmable indoor testbed setup by employing
the USRP B210s to act as both the ground terminal transmit-
ter and satellite swarm receivers. To stay as close to real-
life deployments as possible, we built the testbed without
an anechoic chamber, while physically maintaining a LOS
connection at all times. Since the transmitter and receivers
do not share a common LO, a random phase shift is intro-
duced into every new transmission and reception [16], which
emulates the effect of different channel conditions at different
swarm nodes in a practical deployment. Also, a USRP B210
supports two wireless channels simultaneously, therefore, it
can be used either as a single-antenna radio for SISO/SIMO
applications or as a dual-antenna radio, allowing its usage for
MIMO applications. For implementing the swarm-MRC, the
ground terminal was emulated using a single-antenna radio
transmitter and the swarm was emulated using three single-
antenna receivers. The testbed currently has stationary nodes
acting as swarm transceivers, which will be enhanced in the
future with UAVs to enable mobility among the swarm receiver
nodes. The testbed hardware setup is as depicted in the fig. 2.

All the USRPs are connected to a host PC, in order to
enable an end-to-end data flow from the transmitter to the
receiver. The PC interacts with the radios using a software tool,
which interfaces with the USRP Hardware Driver (UHD) for
configuring them and sending out/capturing symbols. MAT-
LAB has been chosen for this purpose in our experiments,
owing to its extensive documentation, hassle-free integration
with radio-independent signal processing packages and ease
of documentation.

C. Preamble-Based Channel Estimation

For the purposes of over-the-air experimentation, one needs
to perform channel estimation based on the real data trans-
ferred between the tranceivers. We have used a single-tap time-
domain filter to represent the wireless channel, which was then
estimated by performing a correlation between the transmitted
preamble sequence at the ground terminal and the captured
preamble sequence at the receiving satellite nodes [17].

If x[n] is the transmitted preamble sequence and yl[m]
represents the sequence received at lth satellite node in the

swarm, then the channel estimate at this node in time domain
is obtained using ĥl:

ĥl = corr(yl[m], x[n])

= yl[m] ∗ x′[−n]

= hl[m] ∗ x[m] ∗ x′[−n] + ηl[m] ∗ x′[−n] (6)

where corr(.) is a correlation operator, x′ represents a complex
conjugate of x, hl[m] is the actual channel value at lth satellite,
for which we are finding an estimate using ĥl, and ηl[m] is
the i.i.d noise at satellite l.

From (6), the term x[m] ∗ x′[−n] represents the autocorre-
lation of preamble sequence at the receiver end, with respect
to the transmitted sequence. Since preamble sequences with
good autocorrelation properties are chosen for communica-
tions, m = n represents a time when the captured preamble
coincides the most with the transmitted sequence, resulting in
close-to-impulse response. That is, x[m] ∗ x′[−n] ≈ 1 when
m = n and approximates to 0 otherwise. Then, the correlation
in (6) reduces to

ĥl = hl[m] + η̂l[m], (7)

where η̂l[m] = ηl[m] ∗ x′[−m] is the distortion in channel
estimate due to the presence of noise.

Since the channel is assumed to be a single-tap value, ĥl in
(7) represents the best channel estimate for the satellite node
under the assumed conditions.

III. END-TO-END SATELLITE SWARM COMMUNICATIONS

In this section, we develop an optimal swarm receiver
combining using the swarm-MRC. We also investigate deep
learning-aided 5G-compliant LDPC channel coding.

A. Optimal Receive Diversity via Swarm-MRC Provisioning

By incorporating a swarm structure for realizing a satellite
receiver, we have introduced uncorrelated channels at each
node represented by (5). This implies a higher possibility of at
least some channels having better data transmission conditions
compared to others at most times. Thus, if we were to combine
individual satellite node performances in proportion to their
channel state information estimates, better channels will be
given higher weightage and lower performing channels will
have a smaller effect on the overall output.

Let us consider a wireless communication system involving
a single-antenna ground terminal acting as a transmitter (NT =
1) and multiple single-antenna B210 receivers emulating the
satellite swarm nodes with LOS channels. Swarm-MRC com-
bines the outputs from individual satellite nodes such that the
overall SNR can be maximized during the operation, thereby
resulting in improved effective data rates, compared to any
individual receiver performance.

It is significant to note that, while the swarm structure aids
in diversity, the distributed nature of receiver nodes implies
the existence of varied frequency offsets and timing offsets
among them due to uncorrelated LOs and clocks. This is in
contrast with a centralized receiver architecture, where the



(a) Captured raw IQ symbols (b) IQ symbols after coarse fre-
quency offset correction

(c) IQ symbols after symbol syn-
chronization to eliminate timing off-
sets

(d) IQ symbols after fine frequency
correction to completely eliminate
frequency offsets

Fig. 3. Postprocessing of captured symbols at individual receiver nodes

offsets obtained at all antennas would be identical, since a
single LO and a clock reference would be shared among all
receiving circuits. Thus, for a swarm architecture to work
well, the offsets at individual receiving antennas should be
eliminated within the satellite node, before performing any
optimization scheme.

We have achieved this offset compensation in individual
nodes by utilizing the Communications Toolbox in MATLAB
in a modular fashion. A Coarse Frequency Compensator func-
tional block was first employed to eliminate large frequency
offsets in the received signals. This was followed by elimi-
nating timing offsets by identifying suitable samples from the
oversampled captured signal using the Symbol Synchronizer.
Finally, a PLL-based Carrier Synchronizer was utilized to
eliminate any residual finer frequency offsets. Fig. 3 shows the
offset correction in at one of the receivers, after each correction
phase.

Looking back at the architecture, since NT = 1, from (1)
and (5), considering the sampled, offset-corrected received
data sequence as yl[n] at lth receiver node,

yl[n] = hlx[n] + ηl (8)

where, l ∈ {1, 2, . . . , NS}, x[n] denotes the transmitted data
sequence, h1

l = hl is the channel response for the respective
receiver and ηl is the i.i.d noise at the satellite node l.

With the aim to combine the data from all receivers, we have
utilized a combining weight vector w = [w1 w2 . . . wNS

],
which results in a combined received data sequence as yout =

wy, where y = [y1 y2 . . . yNS
]T ,

yout = wy =

NS∑
l=1

wl yl =

NS∑
l=1

(wlhlx + wlηl). (9)

If ptx is power of the transmitted signal, then SNR for the
combined result is expressed as [18]:

SNR =
ptx
∑NS

l=1 ||wlhl||2

N0

∑NS

l=1 ||wl||2
, (10)

where N0 is the AWGN noise power level. Swarm-MRC
aims to maximize the signal-to-noise ratio defined in (10) by
deriving a suitable weight matrix wMRC using the Cauchy-
Schwarz inequality [13],

wMRC = argmax
w

∑NS

l=1 ||wlhl||2∑NS

l=1 ||wl||2
= hH, (11)

where h = [h1h2 . . . hNS
] and (.)H is a Hermitian operation.

The weighted combination yout = wMRCy represents the
optimized output at the end of swarm-MRC scheme in our
ground-to-space uplink communication.

B. Deep Learning Aided Low-Density Parity-Check Codes

LDPC codes are a form of soft-in soft-out linear codes,
where the operation adds a certain number of redundant bits
to a binary message, resulting in a larger codeword, to provide
robustness to errors due to harsh channel environments. LDPC
decoders take in soft demodulated bits as inputs (represented
by log-likelihood ratios or LLRs) and give out soft outputs, as
an estimate of the codeword. The relation between inputs and
outputs is represented using a parity check matrix P. If ‘c’ is
an encoded codeword, channel coding defines P · cT = 0.

Tradionally, parity check matrices are represented as bipar-
tite graphs known as Tanner graphs. The first node type of
the bipartite graph is a ‘variable node’ that corresponds to the
encoded codewords/columns and the second node type is a
‘check node’ that represents the linearly independent matrix
rows. Edges of the graphs represent the non-zero inputs of
P. LDPC decoding can be realized as an iterative process
consisting of two LLR exchange operations between the check
nodes and the variable nodes.

We have adopted a neural network-based LDPC decoder
presented in [19], where each layer has two sets of nodes
(variable and check) aligned with the Tanner graph repre-
sentation, and extended its functionality from a simulation
environment to real-time OTA experiments. The decoder uti-
lizes a protograph-LDPC BG2 parity check matrix defined by
3GPP for 5G [20], with a lifting factor of Z = 16. This
corresponds to an input size of 52×16 = 832 bits. Each layer
consists of neurons corresponding to the number of edges in
the Tanner graph that represents the lifted BG2 matrix. Here,
a min-sum (MS) decoding algorithm was employed which
consists of a single-parity-check operation at each check node
and a repetition code operation at the variable nodes. The
iterative implementation of decoder is realized by unfolding
this operation into layers in the neural network structure.



Input LLRs
𝑙𝑣

𝑙(𝑣 ,𝑐 )
(1𝑐 )

Trained 𝛼 (1)

and 𝛽 (1)

𝑙(𝑣 ,𝑐 )
(2𝑐 )

𝑙𝑣

Output
LLRs

Update 𝛼 (𝑃) and 𝛽 (𝑃)

using gradient descent

𝑙(𝑣 ,𝑐 )
(𝑃𝑐 )

Trained 𝛼 (2)

and 𝛽 (2)

…

𝑙𝑣

Hidden Layer 1
Trained

Hidden Layer 2
Trained

Hidden Layer P
Under Training

Fig. 4. Neural Network showing ‘P ’ hidden layers, with ‘Pth’ layer being
trained using gradient descent. Since the training is iterative in nature, first
layer gets trained completely to identify α1, β1, then the next layer is added
and the process is repeated, and so on

The network was built as a deep neural network structure
consisting of 25 hidden layers, in order to accommodate for
training large input sequences. Authors in [19] had utilized
such a large structure to train and infer inputs from multi-
ple lifting factors simultaneously, while our adaptation uses
a single lifting factor and extends its application to OTA
implementation.

Considering an edge in the parity check matrix e = (v, c),
where v represents a variable node and c represents a check
node, let E = {e = (v, c)} be defined as a set of all edges
in the neural network. LLR inputs into the neural network are
given as lv . For ith hidden layer, if LLR update for its variable
node is represented as live and that for the check node is given
as lice , for edge e, then the update operation is performed as

live=(v,c) = lv +
∑

e′=(v,c′),c′ ̸=c

l
(i−1)c
e′ , (12)

and check node update lice for edge e is defined as

lice=(v,c) =

( ∏
e′=(v,c′),v′ ̸=v

sgn
(
live′
))

× ReLU
(
αi
e × min

e′=(v,c′),v′ ̸=v

∣∣live′ ∣∣− βi
e

)
, (13)

where sgn(.) is the sign operator, αi, the normalization factor,
is represented by weights of ith hidden layer and βi, the offset
factor, is represented by bias of ith hidden layer.

For the purpose of training and obtaining suitable network
parameters, random messages of 832 bits were generated
as a synthesized training dataset. In order to eliminate the
problem of vanishing gradients, the network was trained in
an iteration-by-iteration fashion, where each layer was trained
independently using gradient descent and cross-correntropy
loss. Fig. 4 show a diagramatic representation of the training
process.

IV. PERFORMANCE EVALUATION DEMONSTRATION

This paper emphasizes on the development of a testbed and
evaluating an end-to-end communication module based on the
proposed LEO satellite swarm architecture, to provide resilient
ground-to-space communication. While the inter-satellite link
(ISL) communications in the proposed architecture can be
realized through prevalent high-speed optical ISL mechanisms

[21]–[23], since the receiver nodes are emulated by software
defined radios deployed in an indoor environment, the optical
ISL is replaced by operations on a host computer. For our
experiment, we have utilized a central frequency of 1.85GHz,
operating at a narrowband bandwidth of 1MHz, and VERT900
isometric antennas to provide a 3dBi gain at transmitter and
receiver nodes.

A single-carrier mode of data transfer was adopted for
our experiments, with data modulated using the quadrature
phase shift keying (QPSK) scheme. The transmitter power
was varied over a range of values by reconfiguring the low-
noise amplifiers in the radios, in order to evaluate the receiver
performances at each stage. We have used a 12-core Ubuntu
20.04 machine with 16GB memory installed and MATLAB
R2022b for radio interfacing, radio configuration, channel
encoding/decoding and signal post-processing after reception.

A. Swarm Maximal Ratio Combining

In our demonstration of swarm-MRC, for the sake of
completeness, we have implemented the equal ratio combining
(ERC) and selection combining (SC) methods, in addition
to MRC,to prove that the swarm-MRC weighted combining
scheme delivers the best performance in comparison to other
prevalent schemes. If h is a vector containing channel gains
from all receivers, for a particular symbol i, weights for each
of the combining methods is given as,

wMRC = |h|e−j∠h, (14)

wERC = e−j∠h and

wSC,i =

{
1 if |hi|2 is the maximum among all receivers
0 otherwise

While both ERC and MRC schemes combine results from
all receivers through weighted vector operations, unlike se-
lection combining which chooses only the best performing
receiver output, the swarm-MRC scales individual receiver
outputs by their channel estimates, which accentuates the
performance from a better quality channel while decreasing
the distortion due to lower quality channels. This property
is described in (14) and is also evident from the practical
experiment setup for swarm-MRC operation as shown in the
Fig. 5.

B. Data Rate Enhancement through LDPC Channel Coding

In order to evaluate cross-layer implementations and in-
corporate intelligence into the swarm architecture, we have
deployed a deep learning-aided LDPC decoding model into
the receivers for providing error correction capability, which
can further increase the data rate performance. Since the
trained neural network had utilized the 3GPP-defined BG2
parity check matrix, every 10 data bits would be coded with
additional 42 codebits, resulting in a 52-bit codeword. By
utilizing a lifting factor of Z = 16, we deployed an LDPC
encoder which takes in data vectors of size 160 bits and
generates coded frames of size 832 bits. These chunks of
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coded frames are further processed and sent out the RF
frontend.

At the receivers, after data capture and postprocessing such
as synchronization, demodulation and combining, the obtained
soft inputs are provided to the neural LDPC decoder model
for infering the data vector to the best ability. Fig. 6 shows
that the swarm-MRC output from the physical layer has either
improved or retained the performance, at most places in the
operating region, by incorporating LDPC channel coding. It is
also noteworthy to observe that the neural network had been
trained purely on simulated data, but owing to its large hidden
layer architecture, the model performs well even on real OTA
data. The data rates can be improved further by incorporating
the real-time OTA data into training the neural MS decoder.

V. CONCLUSIONS

In this paper, we have developed the SPELS testbed to
successfully evaluate a LEO swarm satellite communication
architecture. We have proved the effectiveness of a swarm
structure, through the said testbed, by implementing an end-to-
end communication module consisting of a receiver diversity-
based swarm-MRC technique and a deep learning-aided LDPC
decoding algorithm. The testbed was developed to scale well
according to the evaluation needs. For instance, owing to the
support of 2 RF channels in B210, a second transmission
antenna can be attached to the transmitter for evaluating
MIMO communication in the uplink. For applications needing
higher number of antennas and phase synchronous operations,
more sophisticated software defined radios such as USRP
X310 and N3xx series, for example, can replace existing
devices in a plug-and-play fashion, with minimal changes in
the radio configuration setup.

We intend to extend our existing testbed to include MIMO
applications (NT > 1), specifically with an aim to develop
a jamming-resistant ground-to-space communication. Spatial
diversity techniques such as singular value decomposition
(SVD)-nulling and also frequency hopping spread spectrum
(FHSS)-based anti-jamming functionality will be explored in

the future works. Owing to a high-performance host PC,
there is an also an opportunity to incorporate intelligence into
several aspects of the communication scheme. While we have
demonstrated this notion by introducing a model-driven chan-
nel coding scheme, using a pre-trained deep learning model
using simulated datasets, the performance of such a setup can
be improved even further by incorporating the real time OTA
data into the training. Apache Spark, for example, can be
utilized for distributing processing of the large repositories
of OTA data efficiently within the swarm, and in conjunction
with well established machine learning frameworks such as
TensorFlow [24], can be used for re-training and updating the
existing deployed models for improved performance. More
relevant use cases for possible exploration can constitute
applications ranging from real-time channel estimation [25] to
building capability for serverless edge computing as postulated
in [11].
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Abstract—The limited capacity of the random access channel
(RACH) represents a challenge for adequate resource allocation
in 5G radio access networks with network slicing. Further-
more, a fair division of scarce radio resources is required to
simultaneously support many users with heterogeneous service
requirements. In this work, we look at the problem of uplink
radio resource allocation to slices on the radio interface of one cell
in a non-stationary regime with mMTC, eMBB, and H2H traffic.
We analyze four resource allocation policies for efficient random
access to improve each slice’s capacity in terms of successful
access probability, the number of preamble transmissions, and
access delay. Besides the number of available preambles in the
RACH, we also consider the limitation of uplink grants in the
radio access network.

Index Terms—cellular systems; machine-type communications;
RAN slicing; resource allocation; performance analysis.

I. INTRODUCTION

Unrestricted access to information and services will soon
be possible because of a vast number of linked gadgets. Most
of these devices, collectively referred to as user equipments
(UEs), send data sparsely over time using Internet of Things
(IoT) applications. Cellular networks are the greatest option
for UE interconnection because of their well-developed in-
frastructure.

In addition to building on the success of the 4G cellular
network, the fifth-generation (5G) wireless technology is antic-
ipated to enable a wide range of network services with various
performance needs. One of the foundational technologies for
5G is the Network Slicing (NS) paradigm [1]. It can be viewed
as a specially designed logical network made up of virtualized
and dedicated resources used to meet the needs of a specific
service [2]. It allows serving users from various verticals on
the same physical infrastructure. Heterogeneous traffic types,
their combined requirements and interactions, and NS in the
Radio Access Network (RAN) are being studied from several
angles [3], [4]. One of the most important issues to address
is resource allocation, and as a result, several proposals are
emerging.

Three macro classes have been established to categorize 5G
services with distinct traffic patterns and needs: i) enhanced
mobile broadband (eMBB), which comprises traffic mostly
produced by multimedia services; it was common in previous
generations, ii) ultra-reliable and low-latency communications
(URLLC) that must adhere to strict latency and reliability stan-
dards, and iii) massive machine-type communications (mMTC
or mIoT, indistinctly) the most capacity-intensive type of
communication.

In this paper, we look at the problem of uplink (UL) radio
resource allocation to slices on the radio interface of one
cell in a non-stationary scenario of transient mMTC initial
access. For this, we focus mainly on the coexistence of H2H,
mMTC, and eMBB slices that use two uplink resources,
namely preambles and UL grants, during the random access
(RA) procedure. Regarding the URLLC slice, we assume it
can use only dedicated resources (preambles) that are pre-
allocated and fixed in time due to the stringent requirements
of such applications. For the evaluation, we obtain the key
performance indicators (KPI) defined by the 3GPP [5], namely,
access success probability, number of preamble transmissions
per access attempt, and access delay.

The rest of the paper is organized as follows. We re-
view studies analyzing NS in Section II. Then, we describe
the system model, RAN slicing policies, and the network
configuration parameters used in this study in Section III,
Section IV, and Section V, respectively. Our most relevant
results are presented in Section VI, and finally, we present
our conclusions in Section VII.

II. RELATED WORK

Although several papers have focused on resource manage-
ment and orchestration in 5G networks implementing NS, only
a few have addressed resource allocation strategies at the RAN
level, particularly in the random access channel (RACH). A
significant problem is the coexistence of eMBB, mMTC, and
URLLC services and applications in a 5G slice at the RAN



level. While there are already several pieces of research on the
performance evaluation of 5G downlink (DL) use cases, there
are few results on the UL [6].

In the RAN, the slicing is usually performed using or-
thogonal resource allocation. In [7], the performance of non-
orthogonal slicing of RAN resources in the UL is investigated.
The resources are shared by a set of service devices: eMMB,
URLLC, and mMTC, with different reliability requirements.
The RA procedure for resource allocation is not considered
in the study. In an infrastructure with equivalent QoS re-
quirements and different slicing configurations, it is concluded
that, with non-orthogonal slicing, the UL presents a higher
degradation than the DL in the RA process [8].

In [9] the authors propose prioritizing access to RACH
through a segmentation of the preambles available in the
system. It consists of a fixed separation of the preambles
available for the RA procedure. For this, the preambles are
divided into subsets. For example, the authors in [10] propose
dividing the preambles into subsets to serve the HTC and
MTC services in LTE. In these studies, the preamble allocation
remains static regardless of the system load.

In [11], a preamble allocation model is presented based on
the estimation of the system load and the priority given to
each service class. Three classes of service, URLLC, eMBB,
and mMTC, are considered. The load is estimated before each
random access opportunity (RAO). Based on the arrival load
estimate, the number of preambles allocated for each device
class is updated before each RAO.

In [12], the RACH resource allocation in a 5G network
implementing NS is studied. Two types of generic 5G services
are considered: eMBB and mMTC. Each service can receive
dedicated and shared subsets of RAN and RACH resources.
The proposed model analyzes the system performance in terms
of blocking probability for each slice. It also compares an
equal and proportional allocation of resources. An allocation of
dedicated and shared preambles is performed. The evaluation
is performed only for a network with two slices and includes
neither the RA procedure nor the segmentation of UL grants.

The limited capacity of the RACH represents a challenge for
adequate resource allocation. Furthermore, a fair division of
scarce radio resources is required to simultaneously support
many users with heterogeneous service requirements. This
work seeks an efficient RA resource allocation policy con-
sidering preambles and UL grants.

III. SYSTEM MODEL

A RAN with a set of S = {1 . . . S} slices is considered.
We concentrate on a cell-level resource allocation issue and
study the allocation of UL resources used in the RA procedure.
UEs are fully informed of the slice to which they belong.
The base station (gNB in 5G) broadcasts system information
about the access process and slice configuration. A slice policy
(described in Section IV) determines how radio resources are
distributed.

The RA can operate in two modes: contention-free and
contention-based. The former is used for critical situations

such as handover or positioning. The latter is the standard
mode for network access; it is used by UEs to change the
RRC state from idle to connected, to recover from radio link
failure, to perform UL synchronization, or to send scheduling
requests [13].

Random access attempts are allowed in predefined
time/frequency resources, called RAOs. The gNB broadcasts
the periodicity of the RAOs using a variable referred to as the
PRACH Configuration Index. The periodicity varies between
a minimum of 1 RAO every two frames (i.e., 1 RAO every
20 ms) and a maximum of 1 RAO per 1 sub-frame (i.e., every
1 ms) [14].

The physical RACH (PRACH) signals a connection request
when a UE needs to access the RAN. It carries a preamble
for initial access to the network. Up to R = 64 orthogonal
preambles are available to the UEs per cell [14]. In contention-
free mode, there is a coordinated assignment of preambles, so
collision is avoided, but gNBs can only assign these preambles
during specific slots to specific UEs. Hence, UEs can only use
these preambles if assigned by the gNB and during specific
slots. In the contention-based mode, preambles are selected
randomly by the UEs, so there is a risk of collision; that is,
there is a probability that multiple UEs in the cell pick the
same preamble; therefore, contention resolution is needed. In
the sequel, we focus on the contention-based random access
mode.

A. Contention-based Random Access Procedure

A UE initiates its access attempt by sending Msg1 to the
gNB. Msg1 contains a preamble randomly chosen by the
UE from a set of preambles. Due to preamble orthogonality,
several UEs can access the gNB in the same RAO using
different preambles. However, if two or more UEs transmit the
same preamble, the transmitted preamble cannot be decoded
by the gNB, i.e., an Msg1 transmission collision occurs [15].
If Msg1 has sufficient transmission power, it will be decoded
by the gNB [15]–[17]. If it is not decoded, the UE will make
a new attempt by increasing the transmission power.

The gNB responds with an Msg2 to each successfully de-
coded Msg1. The Msg2 includes identification information for
the detected preamble and the granting of reserved resources
(UL Grant) for the Msg3 transmission [15], [17]. The UEs
that do not receive the Msg3 within the WRAR time window
will raise their power and perform retransmission by randomly
choosing a new preamble. All UEs that receive an UL grant
through Msg2 will be able to transmit Msg3. The transmission
of Msg3 is guaranteed through the hybrid automatic repeat
request (HARQ) [15], [17].

The gNB transmits Msg4 in response to Msg3. Msg4
also uses the HARQ process. If the UE does not receive
Msg4 within the contention resolution time, the connection
is declared failed, and a new access attempt is planned
by increasing the transmission power. If a UE reaches the
limit of unsuccessful re-transmissions, the network is declared
unreachable, terminating the RA procedure [15]. UEs that
complete the RA procedure receive a block of time-frequency



resources for communication. All UEs that fail their trans-
mission must execute a backoff procedure, regardless of the
reason for the failure or the slice to which they belong. In
this procedure, the UE waits for a random time U(0, BI)ms
before starting a new preamble transmission in a new RAO.
BI is the backoff indicator, defined by the gNB and sent to
the UEs in the Msg2 [17], [18].

IV. RAN SLICING POLICIES

5G networks implementing NS require defining the alloca-
tion of RAN resources among the different slices. We analyze
the allocation of the preamble and UL grants between the gNB
and UEs statically and adaptively. In both cases, we consider
i) a full isolation level between slices (Fully-sliced) in which
preambles and UL grants are reserved for each slice; and ii)
a medium isolation level between slices (Partially-sliced) in
which the UL grants are not reserved but shared by all slices.

1) Fully-sliced Static Policy: Since the number of pream-
bles assigned to each slice has a high impact on the probability
of collision [19], in this proposal, we assume a fixed allocation
in which the number of allocated preambles and UL grants are
proportional to each other. This number is determined by the
priority of the service using the slice. A cell with S slices
is considered; the gNB performs a fixed allocation of subsets
of different preambles and UL grants to each slice. Doing
so allows additional QoS requirements to be handled with
isolation between slices.

We consider three services: mIoT, eMBB, and H2H. Each
service accesses a slice with different priorities (high, medium,
low). For example, the mIoT service serves a hefty load of
access requests from applications with machine-type devices,
requiring a high-priority slice. On the other hand, eMBB
requires a medium priority slice to serve a moderate number of
access requests with high bandwidth requirements [9]. Finally,
H2H traffic in which few accesses (compared to expected
mIoT [15]) requires a low-priority slice.

To calculate the number of preambles assigned to each slice,
we define a weight {wi|

∑S
i=1 wi = 1} for high, medium,

and low priority slices, respectively. Thus, the slice s (mIoT,
eMBB, or H2H) receives a percentage of the total number of
preambles available in the system calculated as

ri =

{
⌈R ∗ wi⌉, i = 1, . . . , S − 1

R−
∑S−1

j=1 rj , i = S.
(1)

In addition, to ensure the isolation of each slice, an alloca-
tion of the available UL grants θ is performed by

gi =

{
⌈θ ∗ wi⌉, i = 1, . . . , S − 1

θ −
∑S−1

j=1 gj , i = S.
(2)

2) Fully-sliced Adaptive Policy: The probability of suc-
cessful access to a slice depends on the number of devices
accessing and competing for system resources. Therefore, a
static preamble allocation policy based on priorities alone
will not be efficient. Ideally, it should be combined with the
number of active requests in the RACH at each RAO [20].

Unfortunately, the number of active requests in the RACH is
time-varying, composed of requests for new accesses and those
requests that collided and are attempting again. Therefore, we
need an algorithm that considers the number of active devices
at each RAO to assign preambles to each slice.

We consider a slice with dedicated preambles for each type
of traffic mIoT, eMBB, and H2H. In addition, we reserve a
set of preambles shared by traffic flows of the dedicated slices
that pass the conditions explained below. As indicated in Eq.
(3), out of a total of R preambles available in the system, ri
preambles are reserved for the ith slice, and all slices share
rs preambles.

R = rs +

S∑
i=1

ri. (3)

A higher number of collisions occur when a slice does not
have enough preambles allocated. In addition, the gNB has
a limited number of UL grants θ to respond to successfully
detected preambles. Therefore, when the number of preambles
detected by the gNB in a RAO is greater than θ there will be
preambles that do not receive a UL grant. UEs that do not
receive a UL grant should perform a new access attempt [19].

We then propose using the rs subset as an alternative way
to serve accesses with a high probability of failure if they use
the preambles dedicated to their slice. This way, we mainly
prevent these accesses from causing a collision and affecting
other UEs. Access attempts using rs contend for preambles
other than those assigned to their slice. In this work, since
we are considering collision detection in Msg1, having UL
grants reserved for the shared preambles is unnecessary. Only
detected and non-collided accesses using the rs subset will
require UL grants reserved to their slice.

To determine the percentage of shared preambles and UL
grants assigned to each slice, we use the coefficient δ in Eq.
(4). In high-traffic scenarios, the higher the level of sharing,
the higher the collision probability is [12], [20].

rs = ⌈δ ∗R⌉. (4)

We calculate the subset of preambles assigned to each slice
from the remaining preambles. The initial configuration of the
proposal considers that the gNB will reserve some dedicated
preambles for each slice equally; this number is calculated as

r0 =
R− rs

S
= (1− δ)R/S. (5)

The number of preambles and UL grants assigned to each
slice will be dynamically updated by the gNB using the SIB2
message, which allows the gNB to transmit the configuration
parameters to the UEs with a periodicity of 80ms = 16RAOs
[17]. The number of preambles and UL grants assigned in each
period is calculated based on the number of active devices in
the ith slice Ni per RAO and is obtained as follows

ri =
Ni

− ln(wi)− ln(x)
, (6)



where wi is the weight assigned to the ith slice, Ni is the
average number of active devices in the ith slice per SIB2
update period, and x represents a proportionality factor in
ensuring that the available resources (preambles or UL grants)
of the RACH are not exceeded; it is tuned to satisfy

R = rs +

S∑
i=1

Ni

− ln(wi)− ln(x)
. (7)

The number of active devices for the ith slice Ni that access
the RACH and wait for the preamble assignment varies in
each RAO. Moreover, the gNB has no way of knowing this
information; this value is estimated using the process reported
in our previous works [17], [18], [21].

Bearing in mind that the maximum number of successful
attempts is obtained when the number of contending UEs at the
ith slice is approximately the number of preambles assigned
to that slice (i.e., rs ≈ Ni) [15], we define thresholds for
each service traffic. Requests from active nodes that exceed the
corresponding threshold will use the rs subset of preambles. In
this way, we ensure each slice’s maximum capacity, avoiding
excess of collisions and retransmissions. Requests using rs
will attempt to complete the RA procedure with a lower
successful access probability. Those UEs attempts that do not
collide in the transmission of Msg1 and are correctly detected
by the gNB will wait for a UL grant to finish the procedure
successfully. In contrast, the UEs attempts that used the rs and
failed will be able to make their next attempt once the backoff
time has elapsed.

3) Partially-sliced scheme for Static and Adaptive Policies:
We also analyzed a variation to the fully-sliced scheme in both
Static and Adaptive policies where UL grants are not reserved
for each slice. Instead, the UL grants are shared and available
to access attempts that complete the Msg1 and are correctly
detected by the gNB regardless of the subset of slice preambles
they used. It is evident that the access attempts will constantly
utilize all UL grants in high traffic. A disadvantage of this
variation is the partial loss of isolation using slice resources.
That is, this scheme isolates preambles but not UL grants.

V. NETWORK CONFIGURATION PARAMETERS

A discrete-event simulator of the 5G RAN with NS has
been developed in C++ to evaluate the proposals. Additionally,
these results were corroborated with MATLAB simulations
independently. The system accommodates three types of traffic
in each simulation: mIoT, eMBB, and H2H, with different
access request intensities. The distribution and parameters used
by each traffic model are described in Table I. The contention-
based RA procedure described in Section III-A is replicated
with the parameters listed in Table II. Simulations were run
j times until the difference of computing the corresponding
metric in the j th simulation run differs from the one computed
in the j − 1 th simulation run by less than 1%, considering a
minimum value for j such as 103. The simulator provides the
flexibility of choosing the parameters of interest, including
the type of traffic, number of devices, timing, processing and

Table I
TRAFFIC MODELS FOR 5G NS RACH EVALUATION

Characteristics Traffic Model mMTC Traffic Model eMBB Traffic Model H2H

Arrival distribution Beta(3,4) over T Poisson(5) over T Uniform over T
Number of devices 2500, . . . , 30000 1000 33000
Distribution period (T) 10 seconds 10 seconds 60 seconds

Table II
GENERAL RACH SLICING CONFIGURATION

Parameter Setting

Number of slices 3
PRACH Configuration Index 6
RA Periodicity (RAO) 5 ms
Subframe length 1 ms
Total number of preambles 54
Maximum number of preamble trans-
missions

preambleTransMax =
10

RAR window size WRAR = 5
mac-ContentionResolutionTimer 48 sub-frames
Maximum number de UL grants per
subframe

NRAR = 3

Backoff Indicator BI = 20 ms
Preamble detection probability for kth
preamble transmission

Pd = 1− 1
ek

HARQ re-transmission probability for
Msg3 and Msg4 (non-adaptive HARQ)

10%

Maximum number of HARQ TX for
Msg3 and Msg4 (non-adaptive HARQ)

5

Periodicity of RAOs 5 ms
Preamble transmission time 1 ms

channel parameters such as the number of available preambles,
number of slices, priorities, and backoff window size.

A. Performance Metrics

The three KPIs for the purpose of RACH capacity evaluation
with each slicing policy are the following [5]:

1) Access success probability Ps is the probability of suc-
cessfully completing the random access procedure within
the maximum number of preamble transmissions.

2) Statistics of the number of preamble transmissions per
access attempt K.

3) Statistics of access delay D defined as the time elapsed
between the arrival of a UE and the successful completion
of its RA procedure.

B. Static-sliced Policies

We define the vector w = [0.64, 0.32, 0.04] for the high,
medium, and low priority slices, respectively. We find the
number of preambles assigned to each slice ri using Eq. (1).
It remains constant throughout the simulation and is reserved
for use by the UEs of each slice. With the same logic, we use
Eq. (2) for reserving the UL grants of each slice gi.

C. Adaptive-sliced Policies

To evaluate these policies, prior to the start of the RA
procedure, we find the number of shared preambles rs. For
this, we assume a δ = 10 in Eq. (4) since it is the factor that
maximizes performance in a high-traffic scenario, as observed



Figure 1. Succesfull access probability of mIoT traffic for each δ

in Fig. 1. The remaining preambles will be assigned using
Eq. (5) to each slice dedicated to mIoT, eMBB, and H2H
services.

In the following RAOs, the allocation of preambles and UL
grants to each dedicated slice will be performed dynamically
using Eqs. (6) and (7) each SIB2 period. In addition, we define
a priority vector w = [0.57, 0.29, 0.14] for mIoT, eMBB, and
H2H services.

VI. RESULTS

In the following, we detail the results for each service
according to the traffic models detailed in Table I and the
network configuration described in Table II. The eMBB and
H2H services are evaluated when mIoT traffic varies from light
(2500 access requests) to heavy load (30000 access requests).
We consider each scenario’s eMBB service with medium-
load (1000 access requests) and H2H service as background
traffic. For the sake of comparison, we also evaluate a scenario
without implementing network slicing, called Unsliced.

A. mIoT service

Fig. 2 illustrates the Ps as a function of the number of
mIoT UEs. As expected, Ps decreases as the number of mIoT
UEs increases. The Adaptive-sliced policies maintain a higher
value of Ps than the Unsliced and Static-sliced configurations.
For light load scenarios (i.e., less than 10000 UEs), all slice
policies present a high Ps value; it is evident that as the
number of UEs competing for access in the RA procedure
increases, the Ps drops drastically. Moreover, it is observed
that the fully-sliced adaptive performance is very close to
that of the partially-sliced adaptive, where the UL grants are
not reserved but available for any service. The advantage of
these policies is that the isolation level is improved (i.e., any
flow changes in a slice can affect the performance of the
remaining slices in a lesser way) since resource allocations
are made dynamically with the evolution of active accesses.
Fig. 3 depicts the average number of preamble transmissions
required for successful access. Unsliced and static-sliced poli-
cies require a higher K than the adaptive-sliced ones. Finally,
Fig. 4 illustrates the 95th percentile of the access delay D95.
We observe that it increases with the number of UEs in all

Figure 2. mIoT slice. Successful access probability Ps

Figure 3. mIoT slice. Average number of preamble transmissions required
for successful access E[K]

Figure 4. mIoT slice. 95th percentile of access delay D95

cases. The Adaptive-sliced policies achieve a smaller D95 in
heavy load conditions.

B. eMBB service

Fig. 5 illustrates the behavior of Ps. The Partially-sliced
static policy performs better for light and heavy traffic
conditions than other policies. From 10000 UEs onwards,
both static-sliced policies provide higher Ps. Concerning K,
Adaptive-sliced and Unsliced policies perform similarly in
light load conditions as observed in Fig. 6. The Static-sliced
policies perform uniformly for all network load conditions; in
particular, the partially-sliced static requires fewer preamble



Figure 5. eMBB slice. Successful access probability Ps

Figure 6. eMBB slice. Average number of preamble transmissions required
for successful access E[K]

Figure 7. eMBB slice. 95th percentile of access delay D95

transmissions in heavy load conditions for successful access.
Regarding D, smaller values for light loads (less than 10000
UEs) can be obtained with the adaptive-sliced policies, as
observed in Fig. 7. In heavy load scenarios, all policies present
a similar behavior, particularly the partially-sliced static policy
shows a smaller D.

C. H2H service

Figs. 8, 9, and 10 present the results of the evaluation of
the H2H service and the effect it suffers with a variation
of the number of mIoT UEs. Fig. 8 indicates that the best
performance is obtained with the Static-sliced policies. Both

Figure 8. H2H slice. Successful access probability Ps

Figure 9. H2H slice. Average number of preamble transmissions required for
successful access E[K]

Figure 10. H2H slice. 95th percentile of access delay D95

Adaptive-sliced policies perform considerably better than the
Unsliced one. A value of Ps above 90% is guaranteed with
all slicing policies. The number of transmitted preambles and
the access delay is illustrated in Figs. 9 and 10, respectively.
When the number of UEs exceeds 7500, the Static-sliced
policies provide the lowest values in the two metrics since they
have reserved resources for efficient performance. The H2H
slice performance is not affected by increasing the number
of mIoT accesses with the Static-sliced policies. Comparing
the Adaptive-sliced policies and the Unsliced one, they show
similar behavior in terms of D and the Adaptive-sliced out-
performs the Unsliced in terms of K.



VII. CONCLUSIONS

Implementing network slicing in 5G radio access networks
achieves isolation between different services hosted by differ-
ent slices. Traffic variations generated in one slice minimally
affect the other slices. We verified that limiting the accesses
to the maximum capacity of each slice allows for maximizing
the utilization of the RACH by increasing the probability of
successful access of UEs, isolating each slice from the con-
gestion produced by the different services. A shared preamble
subset serves connection requests that exceed capacity.

In the fully-sliced policies, a segmentation of preambles and
UL grants is performed, which means that any congestion issue
in one slice will not be propagated to the rest. In the partially-
sliced policies, a segmentation of preambles and not of UL
grants are performed; complete isolation is not reached, but
an efficient occupation of the available UL grants is achieved
since unused UL grants by slices with a light load can be
exploited by access request from other slices.

The partially-sliced static policy can improve the perfor-
mance of eMBB and H2H slices in heavy-load mIoT scenarios
due to a constant allocation of resources. For mIoT services,
the adaptive-sliced policies provide better performance.
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Spain

Jorge Martinez-Bauset
Communications Department

Universitat Politècnica de València
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Abstract—Network Slicing (NS) is one of the technologies
considered a pillar of 5G networks. It allows the division of
the physical infrastructure of a network into several isolated
logical networks (slices). The slices can have different sizes and
be offered to other use cases. We analyze the radio resource
allocation problem through a random access channel model
considering the radio access network (RAN) with NS in a steady
state. We perform an in-depth study of the random access
procedure (RAP) to optimize resource allocation in a 5G RAN
with NS. We focus on assigning subsets of preambles for each
slice depending on the service’s priority. The main contributions
of our work are the following: i) A model for a scenario of n
slices; that is, it has no limitation for the number of use cases.
ii) An efficient RAP resource allocation policy to maximize the
probability of successful access by UEs in each slice.

Index Terms—5G cellular systems; network slicing; analytic
model, RAN slicing; resource allocation.

I. INTRODUCTION

Today’s many connected devices allow massive and unre-
stricted access to information. However, most of these devices,
called user equipment (UE), send data sparsely over time,
using Internet of Things (IoT) applications. The best intercon-
nection alternative for UEs is cellular networks due to their
widely deployed infrastructure. However, cellular technology
was conceived to handle human-to-human (H2H) traffic and
not many UEs interacting simultaneously, as with machine-to-
machine (M2M) communications. This results in many devices
trying to connect to the base station of a cellular network with
the corresponding congestion problems that this causes.

Fifth-generation (5G) networks emerge as an alternative to
satisfy wireless network users’ high service and connectivity
requirements. With the implementation of 5G networks, data
rates are expected to reach 10 Gbps [1]. It is also estimated that
5G will reach a total of 4.4 billion subscribed devices, which
will represent 49% of all mobile subscriptions in 2027 [2].
Besides, the vision of 5G is to provide extremely low latency,
higher capacity, and better QoS perceived by users [3].

Unlike 4G, which was conceived to provide mobile broad-
band communications, the 5G infrastructure is expected to en-
able the evolution of sectors such as industry 4.0, automotive,
e-medicine, and entertainment, among others [4]. Although the
vision and benefits of 5G are precise, enabling technologies are

Table I
SLICE TYPES FOR USE CASES

Slice /
Service type

SST
value Characteristics

eMBB 1 5G enhanced mobile broadband
URLLC 2 Ultra-reliable low latency communications

mIoT 3 Massive communications IoT
V2X 4 Vehicle to everything V2X services

HMTC 5 High-Performance Machine-Type Communications

an open field of research. One of the technologies considered a
pillar of 5G networks is Network Slicing (NS). NS allows the
division of the physical infrastructure of a network into several
isolated logical networks (slices). The slices can have different
features and be offered to other use cases. In [5], a slice
is defined as a combination of network functions (NF) and
radio access technologies (RAT) for a specific use case. So,
NS is allocating a dedicated or shared portion of the network
resources for each slice [6].

In the ETSI Technical Specification 123 501 update [7],
a slice is identified by a Single Network Slice Selection
Assistance Information (S-NSSAI). An S-NSSAI comprises
i) a Slice/Service type (SST), which identifies the expected
service in the NS, and ii) a differentiator segment that al-
lows distinguishing several NSs belonging to the same type
of service. These standardized values in the update allow
categorizing five use cases for NS, described in Table I.

In the following, we analyze the problem of radio resource
allocation through a random access channel (RACH) model
considering the RAN with NS in a steady state. For this, we
focus on n traffic flows that, during the Random Access Pro-
cedure (RAP), use the uplink resources (preambles and uplink
grants). For evaluation purposes, we compute the two Key
Performance Indicators (KPIs) defined by the 3GPP [8]: the
probability of successful access and the number of preamble
transmissions per access attempt.

A. Random access procedure with NS
All UEs needing resources to access service must execute

the RAP. It starts when the base station (gNB) offers a random
access opportunity (RAO) to the UEs [6]. The RAP execution



uses two physical channels: the PRACH for the transmission
of preambles and the PUSCH for the data [9]. A preamble is a
specific identifier that UEs transmit to indicate their presence
in the cell to the gNB. The preamble signals are orthogonal
(i.e., the gNB can distinguish preambles sent simultaneously
by multiple UEs). However, the number of preambles in a 5G
New Radio (NR) cell is limited to 64. UEs randomly select
one of these preambles to start their network access [10].

In the time domain, the access system is divided into slots.
Each slot represents a RAO; it occurs periodically, and the
prach-ConfigIndex parameter determines its periodicity [11].
We consider a subframe length of 1 ms and a RAO periodicity
of 5 ms, corresponding to the setting prach-ConfigIndex = 6.

The RAP can be performed in two ways: i) contention-
free or ii) contention-based. The former allocates reserved
preambles during specific intervals, and for specific UEs
(collision-free) [9]. In the latter, the UEs choose preambles
randomly; two or more UEs in the same cell could choose the
same preamble for the same RAO, causing a collision. A high
number of collisions will cause a low probability of success
and an increased access delay. The 3GPP standard suggests
using 54 preambles for contention-based RAP [12].

Before an access attempt, the gNB shares network param-
eters with UEs through Master Information Block (MIB) and
System Information Blocks (SIB) [11] messages. Among the
parameters received through the SIB Type 2 is the periodicity
in time of the RAOs [13].

1) Contention-based RAP: Its operation is based on exe-
cuting the four-message handshake between the gNB and the
UEs. A UE initiates its access attempt by sending Msg1 to
the gNB. Msg1 contains a preamble randomly chosen by the
UE from a set of preambles. Due to preamble orthogonality,
several UEs can access the gNB in the same RAO using
different preambles. However, if two or more UEs transmit the
same preamble, the transmitted preamble cannot be decoded
by the gNB, i.e., an Msg1 transmission collision occurs [13].
If Msg1 has sufficient transmission power, it will be decoded
by the gNB [9], [13], [14]. If it is not decoded, the UE will
make a new attempt by increasing the transmission power.

The gNB responds with an Msg2 to each successfully de-
coded Msg1. The Msg2 includes identification information for
the detected preamble, and the granting of reserved resources
(UL grant) for the Msg3 transmission [9], [13]. The UEs that
do not receive the Msg3 within the WRAR time window will
raise their power and perform retransmission by randomly
choosing a new preamble. All UEs that receive an UL grant
through Msg2 will be able to transmit Msg3. The transmission
of Msg3 is guaranteed through the hybrid automatic repeat
request (HARQ) [9], [13].

The gNB transmits Msg4 in response to Msg3. Msg4 also
uses a HARQ scheme. If the UE does not receive Msg4 within
the contention resolution time, the attempt is declared failed,
and a new access attempt is planned, and the transmission
power is increased. If a UE reaches the maximum num-
ber of re-transmissions, the network is declared unreachable,
terminating the RA procedure [13]. UEs that complete the
RA procedure receive a block of time-frequency resources
for communication. All UEs that fail their transmission must
execute a backoff procedure, regardless of the reason for the
failure or the slice to which they belong. In this procedure, the
UE waits for a random time U(0, BI) before starting a new

preamble transmission. BI is the backoff indicator, defined by
the gNB and sent to the UEs in Msg2 [9], [15].

The rest of the paper is organized as follows. We conduct a
literature review regarding NS in Section II. Then, we describe
the system and analytical models in Section III and Section IV,
respectively. Our most relevant results are presented in Section
V, and finally, the conclusions are presented in Section VI.

II. RELATED WORK

Most studies have focused on the management and orches-
tration of resources instead of how to allocate these resources
in the 5G radio access network. The limited number of
preambles and UL grants available in the RACH represents
a resource allocation problem. Another significant issue is
the coexistence of eMBB, mMTC, and URLLC services and
applications in a 5G segment at the RAN level. While there
is much research on performance evaluation of 5G downlink
(DL) use cases, there are few results for UL [16].

In [17], an algorithm for optimizing the allocation of
radio resources to the slices of the cell of a network that
implements NS is proposed. Its performance is evaluated
by simulation. The study compares different priority levels
assigned to each slice. The priority of each slice is defined
through four techniques: i) searches for the order that meets
an objective function; ii) performs a random ordering; iii)
performs an ordering to maximize the assigned resources; and
iv) a prioritization based on the granularity of each slice. Three
resource allocation methods that ensure isolation in a RAN
with NS are presented in [18]. Notably, a proportional fairness
algorithm limits the number of RBs assigned to each slice. The
authors show through simulation that the isolation between
slices is guaranteed. The results report an improvement in
system performance for the three methods: static allocation,
allocation to ordered slices, and impartial allocation to slices.
In these investigations, the problem of allocating resources and
allocating procedures in the RACH access is not considered.

An optimization approach for allocating radio resources
in the 5G RAN that implements NS is addressed in [19].
Two types of generic 5G services are considered: eMBB and
mMTC. Each service can receive dedicated and shared subsets
of RAN and RACH resources. The proposed model analyzes
the system’s performance in terms of blocking probability for
each slice without analyzing the access delay nor the number
of retransmissions for successful access. Their model considers
that collisions occur in Msg3 of the RAP and evaluate an equal
and proportional allocation of resources for two slices. An
optimal resource segmentation alternative based on the number
of slices in the system is not presented. This proposal does not
achieve complete isolation between slices since segmentation
of RAP uplink grants (UL grants) is not performed.

In [20], non-orthogonal random access (NORA) is proposed
to reduce the problem of congestion in 5G networks. NORA
is based on eliminating collisions caused by accesses from
UEs that use the same preamble in Msg1. It does this by
identifying the difference in arrival time of various UEs with
identical preambles. The analysis carried out by simulation
shows higher performance in terms of preamble collision
probability and access success probability.

This paper considers an in-depth study of the RAP in a 5G
network with NS to improve resource allocation. We focus on
assigning subsets of preambles for each slice depending on the
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Figure 1. System model, 5G RAN with network slicing.

service’s priority. The main contributions of our work are the
following: i) a model for a scenario of n slices; that is, it has
no limitation for the number of use cases, and ii) an efficient
RAP resource allocation policy to maximize the probability of
successful access by UEs in each slice.

III. SYSTEM MODEL

We consider resource allocation at the RAP in a cell with
S slices as illustrated in Fig. 1. Each slice serves users of
a different service: eMBB, voice, mIoT, and URLLC. Each
service is assigned a priority level. Each UE in a slice s must
complete the 4-step RAP to access the time-frequency resource
blocks (RB) for data transfer. The RAP’s physical resources
(preambles) are allocated by the gNB to each slice, using a
resource allocation policy.

We assume that arrivals are generated by a large population
of independent users. Therefore, a Poisson process is appro-
priate to model the arrivals in each slice.

We consider that each of the slices is assigned a block of
resources (preambles). Furthermore, we consider that pream-
bles not assigned to any slice are shared and can be used by
all slices. That is, we will have S slices and S + 1 preamble
blocks (number of slices plus the shared block). Finally, it is
assumed that UL grants will not be reserved for any slice.
In each RAO, all accesses correctly detected by the gNB and
that have not collided will compete for the available UL grants
regardless of the slice they come from.

A. Collision Model
There are two collision models when two or more UEs

simultaneously transmit the same preamble [13]. First, the
gNB cannot decode the preambles transmitted by multiple
UEs, so all the collisions occur in the transmission of Msg1.
Second, all Msg1 are detected, and collisions occur in Msg3.
In this work, we intend to study the behavior of the RACH
in extreme operation scenarios; therefore, we assume that the
collision detection is performed in Msg1. That is, only Msg1s
that have been correctly decoded and have not collided will
have the chance to receive a UL grant.

IV. ANALYTICAL MODEL

Unless otherwise stated or it is evident by the context,
variables defined as “number of X” represent the average
number of “X” per RAO.

Figure 2 illustrates how the resources are assigned for each
slice. We are going to distinguish between slices and blocks

Table II
NOTATION USED

Resources and system parameters
Total number of preambles L
Total number of UL grants G
Number of preambles reserved in the block i Li
Total number of UL grants reserved in the block i Gi
Maximum number of transmission attempts, slice s kms
Power ramping parameter, slice s ∆s

Traffic
Number of new arrivals, slice s as
Number of transmissions that are in the kth attempt, slice s as(k)
Number of random access successfully completed, slice s a∗s
Number of transmissions in the block s Ns
Average number for each random access, slice s Ks

Probabilities
Attempt k detection probability, slice s P 1

s (k)
Probability of receiving a UL grant, slice s P 2

s
Probability of no collision, slice s P nc

s
Probability of receiving a UL grant in the block s p2s
Probability of no collision in the block s pnc

s
Successful probability of the kth attempt, slice k Ps(k)
Successful probability Ps

Figure 2. Slices and blocks of resources.

of resources. Each block is assigned many preambles. The
distribution of access requests from each slice is proportional
to the number of preambles assigned to each block. Thus, the
fraction of accesses of slice s that use the shared block is
given by

L0

L0 + Ls
, (1)

whereas the fraction that used the reserved block is given by

Ls

L0 + Ls
, (2)

where Ls is the number of preambles reserved for each slice,
and L0 is the number of preambles reserved for block 0.

Let as(k) be the number of transmissions of slice s that
are in the kth attempt and kms the maximum number of
attempts. Taking into account the distribution between the
shared common block and the reserved one, the average total
number per RAO of preambles transmitted in each block s is
obtained as

Ns =
Ls

Ls + L0

km
s∑

k=1

as(k), s = 1, . . . , S. (3)



The average number of preambles that use the shared block
per RAO is obtained by adding the contribution of each slice:

N0 =

S∑
s=1

L0

Ls + L0

km
s∑

k=1

as(k) =

S∑
s=1

L0

Ls
Ns. (4)

For Msg1 to be successfully transmitted, three conditions
must be met: i) Msg1 is correctly detected by the gNB, ii)
Msg1 does not collide, and iii) detected and not collided
preambles get a UL grant. Therefore, to determine the proba-
bility of successful accesses, we will calculate the probabilities
of success in these situations.

Msg1 detection probability: the probability of success in
detecting Msg1 will depend on the number of previous Msg1
transmissions in the same access attempt. This is due to
the power ramping scheme. To insert an additional level of
prioritization between slices, the factor ∆s is introduced to
the 3GPP specification. Therefore, the probability of detecting
the kth transmission attempt of a slice s preamble will be
given by

P 1
s (k) = 1− e−k∆s . (5)

If we multiply the detection probability corresponding to
each block by the total number of preambles used, we obtain
the total number of detected preambles:

N1
s =

Ls

Ls + L0

km
s∑

k=1

P 1
s (k)as(k), s = 1, . . . , S (6)

N1
0 =

∑
s=1

S
L0

Ls + L0

km
s∑

k=1

P 1
s (k)as(k) =

S∑
s=1

L0

Ls
N1

s . (7)

Msg1 no collision probability: with the number of pream-
bles of each block and the number of preambles detected by
the gNB, we can calculate the probability of no collision of
the transmitted preambles in the block s as

pnc
s =

(
1− 1

Ls

)N1
s−1

. (8)

Probability of getting a UL grant: the probability that a
preamble transmitted in block s will get a UL grant (proba-
bility of success in Msg2) can be estimated as

p2s = min(1,
G

gs
), (9)

where G is the number of UL grants available, and gs
is the average number of UL grants needed for the block
preambles s, which is calculated as the product of the number
of detected preambles and the probability of not having a
collision

gs = N1
s p

nc
s . (10)

From the probabilities of success of Msg2 and of not
colliding, using the proportion of attempts that go through
block 0 and the proportion that goes through the block reserved
for slice s, it is possible to obtain the probabilities of success
in Msg2 and no collision in slice s as follows:

P 2
s =

Lsp
2
s + L0p

2
0

Ls + L0
, s = 1, . . . , S (11)

P nc
s =

Lsp
nc
s + L0p

nc
0

Ls + L0
, s = 1, . . . , S. (12)

From (5), (11), and (12), we get the success probability of
the kth attempt in slice s:

Ps(k) = P 1
s (k)P

2
s P

nc
s . (13)

If the number of new arrivals (first attempt) in slice s is as,
we have:

as(1) = as (14)
as(k + 1) = as(k)

(
1− Ps(k)

)
, k = 1, . . . , kms − 1.

(15)

To calculate the throughput (average number of successfully
completed accesses per RAO) of slice s, we add the product of
the number of transmissions as by the probability of success
Ps of each attempt k

a∗s =

km
s∑

k=1

as(k)Ps(k). (16)

Finally, the probability of success is calculated as the ratio of
successful transmissions to total transmissions:

Ps =
a∗s
as

. (17)

In addition, the average number of attempts (preamble
transmissions) in slice s is calculated as the sum of the total
number of transmissions per RAO divided by the number of
new transmissions per RAO:

Ks =
1

as

km
s∑

k=1

as(k). (18)

V. RESULTS

A. Model validation

The results of the analytical model have been validated with
results obtained through computer simulation using MATLAB.
For each numerical experiment, we set a basic load vector
a0 = [a1, . . . , as], which establishes the load share of each
slice, and then the total load is scaled by a factor f ranging
from 0.2 to 2, while the load share of each slice is kept constant
a = f a0 = f [a1, . . . , as]. In the following, we detail the
results according to the network configuration described in
Table III.

Fig. 3 compares the results of the analytical model and the
simulation. The horizontal axis represents each slice’s initial
load variation factor f . The initial load of each slice is the
average number of RACH accesses per RAO. The results
show a good match between the model and the simulation.
The results for a low initial load are shown in Fig. 3. Fig. 4
depicts the results when we vary the initial load in one of
the two slices. It is observed that the drop in performance of
slice 2 is due to the increase in a load of access requests of
slice 2. This is because there is no total isolation by having an
assignment different from 0 in the subset of shared resources.



Table III
GENERAL RACH SLICING CONFIGURATION

Parameter Setting

PRACH Configuration Index 6
Subframe length 1 ms
Total number of preambles 54
Maximum number of preamble trans-
missions

preambleTransMax =
10

RAR window size WRAR = 5
mac-ContentionResolutionTimer 48 sub-frames
Maximum number de UL grants per
subframe

NRAR = 3

Backoff Indicator BI = 20 ms
HARQ re-transmission probability for
Msg3 and Msg4 (non-adaptive HARQ)

10%

Maximum number of HARQ TX for
Msg3 and Msg4 (non-adaptive HARQ)

5

Periodicity of RAOs 5 ms
Preamble transmission time 1 ms

Figure 3. Successful access probability as a function of traffic load. Equitable
allocation of resources for two slices in the RAN.

Figure 4. Successful access probability as a function of different traffic load
per slice. Equitable allocation of resources for two slices in the RAN.

B. Equal sharing of resources
We analyze the behavior of the analytical model when an

equal assignment of preambles is made for 2 slices.

Figure 5. Successful access probability as a function of different traffic load
per slice. Equitable allocation of resources for two slices in the RAN.

Figure 6. Average number of preamble transmissions as a function of different
traffic load per slice. Equitable allocation of resources for two slices in the
RAN.

We consider that the gNB will reserve several preambles for
each block of resources equitably; this number is computed as

r0 =

⌈
R

S + 1

⌉
. (19)

In Fig. 5, for an initial load as = [10, 5], and resource blocks
with an allocation L = [18, 18] and L0 = 18, a probability of
successful access greater than 90% is obtained up to around
f = 1 for slice 1 and f = 1.4 for slice 2, which represents
an average of 10 and 7 access requests per RAO, respectively.
Beyond this value, the RACH begins a drop in performance.
As far as K is concerned, we can see in Fig. 6 that the number
of retransmissions starts to increase significantly when f > 0.8
for slices 1 and 2. Reviewing these results, we can say that
when K > 3, the performance of the RACH starts to drop.

C. Resource allocation proportional to load

To determine the percentage of available preambles allo-
cated to the shared block, we use the coefficient δ as

L0 = ⌈δ R⌉. (20)



Figure 7. Successful access probability as a function of different traffic load
per slice. Proportional allocation of resources to the traffic load. β = 2.

Figure 8. Average number of preamble transmissions as a function of different
traffic load per slice. Proportional allocation of resources to the traffic load.
β = 2.

We calculate the number of preambles reserved for each
slice from the remaining preambles. To do this, we use the
proportion factor β as follows

L1 = βL2. (21)

To avoid exceeding the number of available preambles, the
maximum value that L2 can take is 18 (when β = 2).

For the same initial load as in Fig. 5, in Fig. 7, we can
observe the probability of success in the accesses for a scenario
of 2 slices in which we set δ = 0.10 and β = 2. A Ps ≥ 90%
is obtained up to around f = 1.1 for the 2 slices, averaging 11
and 5.5 access requests per RAO, respectively. Furthermore,
we can see that slice 1 has a more pronounced drop in
performance from this point on compared to slice 2. In Fig.
8, we can see again that at the inflection points of the curve,
the mean number of retransmissions is approximately 3.

Figs. 9 and 10 illustrate the results when we set β = 0.5 and
keep the remaining parameters the same. We can observe that
the performance of slice 1 falls drastically due to the decrease
in reserved resources, while the opposite occurs for slice 2.

As observed in Figs. 7 to 10, the differences between
the model and the simulator for both Ps and K are almost

Figure 9. Successful access probability as a function of different traffic load
per slice. Proportional allocation of resources to the traffic load. β = 0.5.

Figure 10. Average number of preamble transmissions as a function of
different traffic load per slice. Proportional allocation of resources to the traffic
load. β = 0.5.

indistinguishable. However, slight differences can be seen
in certain areas due to multiple reserved blocks going into
saturation simultaneously and competing with a higher load
for shared resources. After this, the curves even overlap.

D. Increasing the number of slices
Finally, we will evaluate the analytical model when the

number of slices exceeds 2. We assume a scenario with 5
slices with equitable allocation of resources serving services
with different loads.

This scenario can represent a 5G network with 5 slices, each
dedicated for each use case of Table I. As shown in Fig. 11,
the performance drop in the Ps is related to the load of the
slice. The higher the load, the faster the performance degrades.
The same can be seen in Fig. 12, where those slices with a
higher load carry out more retransmissions.

The results presented in Figs. 11 and 12 show that our model
accurately represents the behavior of a 5G RAN with n slices.

VI. CONCLUSIONS

We have described an analytical model for the RAP of
a 5G network implementing NS in detail. Our model can



Figure 11. Successful access probability as a function of different traffic load
per slice. Equitable allocation of resources for five slices in the RAN.

Figure 12. Average number of preamble transmissions as a function of
different traffic load per slice. Equitable allocation of resources for five slices
in the RAN.

be used to efficiently evaluate the performance of different
resource allocation techniques to the 5G RAN slices. Further-
more, through evaluating performance indicators such as the
probability of success in access and the number of necessary
retransmissions, we have been able to analyze an equitable
allocation of resources proportional to a load of each slice, the
results of which have allowed us to validate our model. When
performing segmentation of preambles and not of UL grants,
we have observed partial isolation between slices. Resource
isolation is one of the main applications of NS. It has been
shown that the probability of success degrades significantly
when the number of retransmissions is above three. Beyond
this point, the RACH is severely congested. In future work, we
plan to extend the model so that the case in which UL grants
are reserved for each slice can be studied. This way, different
network providers or tenants could use each slice virtually.
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